

Lesson 10: Modified 1-group Theory

- Consideration of Slowing Down
- $\hfill\square$ "Roles" of p , τ_{th}
- □ Migration Area (M²), Physical Significance
- $\hfill\square\hfill L^2$, $\,\tau_{th}$ for a Thermal Reactor
- Schematisation of Chain Reaction
- □ Neutron Spectra (thermal, fast reactors)

Thermal Reactor, Considering Slowing Down

Thermal Reactor, Considering Slowing Down (contd.)

Modified 1-group Theory.. 3

Thermal Reactor, Considering Slowing Down (contd.2)

 $\hfill\square$ If one considers that there is a slight increase in $\hfilk\ensuremath{\,k_\infty}$ due to fast fissions,

$$k_{oo} = (\eta_c f)_{H_c} \cdot p \cdot \varepsilon$$

$$---(2)$$

where $\varepsilon > 1$ (fast fission factor)

□ (2) is the Four-factor Formula

$$\Box (1), \text{ i.e. } \nabla^2 \phi_{d_n} + \left[\frac{k_\infty e^{-B^2 \mathcal{E}_{d_n}} - 1}{L^2_{d_n}} \right] \cdot \phi_{d_n} = 0$$

 \Rightarrow Modified 1-group Reactor Equation

with Criticality Condition:

Comments

□ With p = 1, $\tau_{th} = 0$ (no loss of n's during slowing down), one has the preceding (simple 1-group) equation

□ Distribution $\phi(\vec{r})$, and hence the slowing-down sources, depend (as before) on the first eigenfunction of: $\nabla^2 \phi + B^2 \phi = 0$

Comments (contd.)

For a non-critical reactor, $k_{44} =$

$$\frac{k_{e}}{1+L_{e}^{2}B^{2}} \neq 1$$

- One may, as before, use the critical "formalism" for identifying the modification needed to have a critical system (... fictitious medium emitting *i* or per fission)
- In spite of the wide range of energies the n's have in the reactor (> 10 MeV to < 0.01 eV), one has been able to arrive at a 1-group representation, thanks to...</p>
 - Events at thermal energies are the most important in a thermal reactor (80 to 90% of absorptions, typically), and it is possible to obtain well-defined cross-sections...
 - Slowing-down process described in relatively simple manner
 - p : resonance absorptions in fertile material , $\ \tau_{th}$: leakage of fast n's

 \square η_c , f determined by thermal data, e.g. f (thermal utilisation factor) = $(\overline{\xi})$

$$\left(\frac{\overline{z_{ac}}}{\overline{z_{ac}}+\overline{z_{am}}}\right)_{th}$$

) p, τ_{th} depend on epithermal characteristics

Migration Area, M²

Usually
$$\mathcal{L}_{\mathcal{H}}^{2} \mathcal{B}^{2}$$
, $\mathcal{B}^{2} \mathcal{C}_{\mathcal{H}}$ are small, so that

$$\begin{aligned}
\mathbf{k}_{ee} &= (1 + \mathcal{L}_{\mathcal{H}}^{2} \mathcal{B}^{2}) \cdot \mathbf{e}^{\mathcal{B}^{2} \mathcal{C}_{\mathcal{H}}} &\cong (1 + \mathcal{L}_{\mathcal{H}}^{2} \mathcal{B}^{2}) \cdot (1 + \mathcal{C}_{\mathcal{H}} \mathcal{B}^{2}) \\
&\cong 1 + (\mathcal{L}_{\mathcal{H}}^{2} + \mathcal{C}_{\mathcal{H}}) \mathcal{B}^{2} &= 1 + \mathcal{M}^{2} \mathcal{B}^{2} \quad \text{with } \mathcal{M}^{2} (\text{migration area}) = \mathcal{L}_{th}^{2} + \tau_{th} \end{aligned}$$
One arrives at another form of the modified 1-group reactor equation :

$$\nabla^2 \phi_{th} + \left[\frac{k_0 - 4}{M^2} \right] \phi_{th} = 0$$

with the critical condition: $\mathcal{B}_{m}^{2} =$

 $m = \frac{k_0 - 1}{M^2} = B$

Effectively, the entire 1-group formalism has been preserved

• One has simply replaced L_{th}^2 by $M^2 = L^2 + \tau_{th}$

Comments One had: $\widehat{l}_{\mathcal{U}_{n}} = \frac{1}{6} < r^{2} >$ $L_{th_{th}}^2 = \frac{1}{\zeta} < \gamma^2 >$ and average square of the distance travelled average square of the distance between emission at $\mathbb{K}E \sim 2 \text{ MeV}$ and slowing down to E_{th} by a thermal neutron before being absorbed average square of the total distance travelled \Box Thus, $M^2 \propto \langle r^2 \rangle$ by a fission neutron - during slowing down, as well as during diffusion as a thermal neutron $\square P_{NF, 4L} = \frac{1}{1 + L_{1L}^2 B^2} , P_{NF, \gamma} \cong \frac{1}{1 + C_{1L} B^2}$ $\Rightarrow (P_{NF})_{fot} = P_{NF,H} \cdot P_{NF,r} \cong \frac{1}{1 + M^2 B^2}$

Modified 1-group Theory.. 8

$L_{th}^{\ 2}$, $\tau_{th}\$ for a Homogeneous Reactor

$$\mathcal{L}_{H_{n}}^{2} = \frac{\mathcal{D}_{H_{n}}}{(\mathcal{Z}_{a})_{H_{n}}} \stackrel{\simeq}{=} \frac{(\mathcal{D}_{m})_{H_{n}}}{(\mathcal{Z}_{ac} + \mathcal{Z}_{am})_{H_{n}}}$$
$$= \left(\frac{\mathcal{D}_{m}}{\mathcal{Z}_{am}}\right)_{H_{n}} \cdot \left(\frac{\mathcal{Z}_{am}}{\mathcal{Z}_{ac} + \mathcal{Z}_{am}}\right)_{H_{n}} = (\mathcal{D}_{m})_{H_{n}}$$

(very low concentration of fuel)

$$\frac{\overline{z_{am}}}{\overline{z_{ac} + \overline{z_{am}}}}_{t} = \left(\frac{\overline{D_m}}{\overline{z_{am}}}\right)_{th} \cdot \left[1 - \left(\frac{\overline{z_{ac}}}{\overline{z_{ac} + \overline{z_{am}}}}\right)_{th}\right]$$

$$\underbrace{(L_m^2)_{th}}_{t} \cdot \underbrace{f}$$

$$\Rightarrow L^{2}_{\mathcal{H}} = (L^{2}_{m})_{\mathcal{H}} \cdot [\ell - f]$$

 $\Box \quad \tau_{th} \sim (\tau_m)_{th} \quad \dots \text{ low fuel concentration}$ $\cong \int_{\mathcal{E}_{dL}}^{\mathcal{E}_s} \frac{\mathcal{D}(\epsilon')}{\epsilon \xi_s(\epsilon')} \frac{d\epsilon'}{\epsilon'} \Rightarrow$

Moderator	IW	Pth (cm ²)
H ₂ O	0.92	27
D ₂ O	0.509	131
С	0.158	368

Modified 1-group Theory.. 9

Comments

$\Box L_{th}^2 \text{ depends on thermal cross-sections} \rightarrow L_{th}^2 = (L_m^2)_{th} \cdot [1 - f]$		
The slowing-down "constants" depend on the moderator characteristics		
$\phi = exp\left[-\frac{N_c I_{eff}(\sigma_e)}{\xi \left(N_m \sigma_m + N_c \sigma_{sc}^*\right)}\right] \qquad \qquad$		
• E.g., for high value of ${f \xi}$, p \uparrow and $ au_{{ m th}}\downarrow$ (losses \downarrow)		
\Box H ₂ O, most "powerful" moderator \Rightarrow slowing-down power: $\xi \xi_s$		
$\square \text{ However, } \Sigma_a \text{ also important } \Rightarrow \text{ moderating ratio: } \frac{\xi \Sigma_s}{\Sigma_a}$		
D ₂ O, graphite offer much better "neutronic compromise"		
 One can have a critical reactor* with natural uranium (*not homogeneous, though) 		

Summary: Bare, Homogeneous Reactors

Schematisation of Chain Reaction

Neutron Energy Spectra (repeat from Lesson 3)

For a thermal reactor (easiest establishing of a chain reaction with ~95% of fissions "thermal")

- Region I... close to a Maxwellian spectrum, somewhat distorted
 - harder (due to higher absorptions at low energies), softer (due to greater leakage of fast neutrons)
- Region II... slowing down region $(\phi \sim 1/E)$
- Region III... Fast region ("degraded" fisson spectrum)
- For a fast reactor, very specific goal (breeding)
 - Moderation avoided as far as possible (E_{avg} ~ between in 0.1 0.2 MeV range)

Summary, Lesson 10

- □ Simplified consideration of slowing down
- $\hfill\square$ "Roles" of p , τ_{th}
- Modified 1-group Reactor Equation
- □ Migration area (M²), physical significance
- $\hfill\square\hfill L^2$, $\,\tau_{th}$ for a thermal reactor
- □ Schematisation of chain reaction
- Neutron Spectra (thermal, fast reactors)