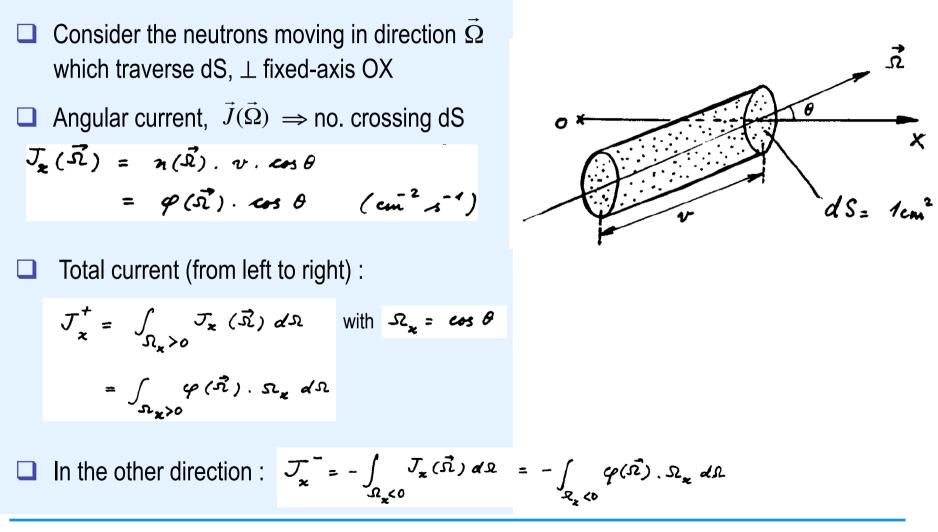


Lesson 5: Neutron Diffusion Equation

Neutron Current

- Neutron Balance, Leakage
- Fick's Law
- Diffusion Equation
- Boundary Conditions
- Point Source, Scalar Flux Distribution
- Diffusion Length (physical significance)

Neutron Current



Net Current

Net current traversing dS (s⁻¹) is given by

 $J_x = J_x^+ + J_x^-$ with both J_x^+, J_x^- taken to be positive

Effectively,
$$\mathcal{J}_{\mathbf{x}} = \int_{4\pi} \varphi(\vec{x}) \cdot \Omega_{\mathbf{x}} d\mathbf{x}$$
, which

- Expresses the neutron balance across dS, does not depend on $\vec{\Omega}$ (i.e. is an integral quantity) and has the dimensions of cm⁻²s⁻¹ (like scalar flux), but can be either +ive or -ive

Similarly,

$$J_{y} = \int_{4\pi} \varphi(\vec{x}) \cdot \vec{x}_{y} dx$$

$$J_{z} = \int_{4\pi} \varphi(\vec{x}) \cdot \vec{x}_{z} dx$$

$$\Rightarrow \vec{J} = J_{x} \cdot \vec{i} + J_{y} \cdot \vec{j} + J_{z} \cdot \vec{k}$$

$$(\vec{J} \text{ is thus a vector})$$

ມີເດ

ds.

٥

 $* J_x^+$

p(st)

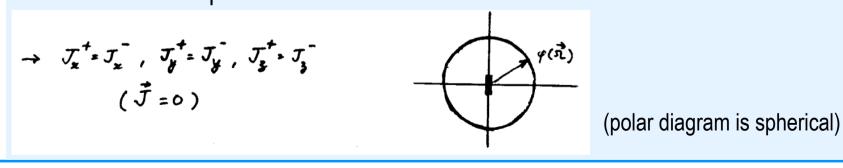
2,>0

X

Isotropic, Anisotropic Angular Flux

In general, φ(Ω) is anisotropic (inhomog. material, interface between 2 zones, etc.)
 Consider the following polar diagram: Here, the net current J_x is +ive (J_x⁺ > J_x⁻)

□ For an infinitely large, homog. system (uniformly distributed source) $\varphi(\vec{\Omega})$: isotropic



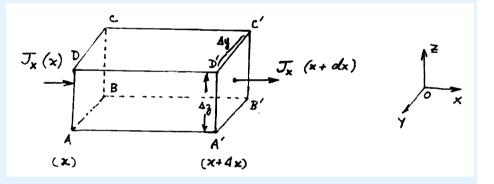
Neutron Balance for a Volume Element ΔV

- □ For a finite system, net current is very important
- \Box If one considers the volume ΔV ,
- Productions = Absorptions + Leakage
 - (for steady-state conditions)
- \Box With a uniform source, Q n/cm³s

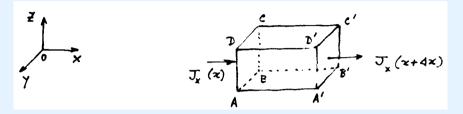
 $Q.\Delta V = R_a \Delta V + \Delta L$

 $\Rightarrow \Delta L + \Sigma_a \Phi \Delta V = Q \Delta V$

where the leakage ΔL depends on the net currents across the different faces...



Leakage as a Function of Net Current



For the direction OX, net no. of n's entering from face ABCD = $J_x(x)$. Δx . Δy

No. Leaving from A'B'C'D' =
$$J_x(x+\Delta x).\Delta y.\Delta z$$

Thus, losses along OX = { $J_x(x+\Delta x) - J_x(x)$ }. $\Delta y.\Delta z$ = $J_x \cdot 4x \cdot 4y \cdot 4y$
Similarly, losses along OY = $J_x \cdot 4y$ and losses along OY = $J_x \cdot 4y$
Thus, ΔL = $\begin{bmatrix} J_x + J_x + J_y + J_y + J_y + J_y \\ J_x + J_y + J_y + J_y \end{bmatrix} \cdot 4y = (div \vec{T}). 4v$
(all 6 faces)

Neutron Balance Equation

One obtained $\Delta L + \Sigma_a \Phi \Delta V = Q \Delta V$ with $\Delta L = (\text{div } \vec{J}) \Delta V$

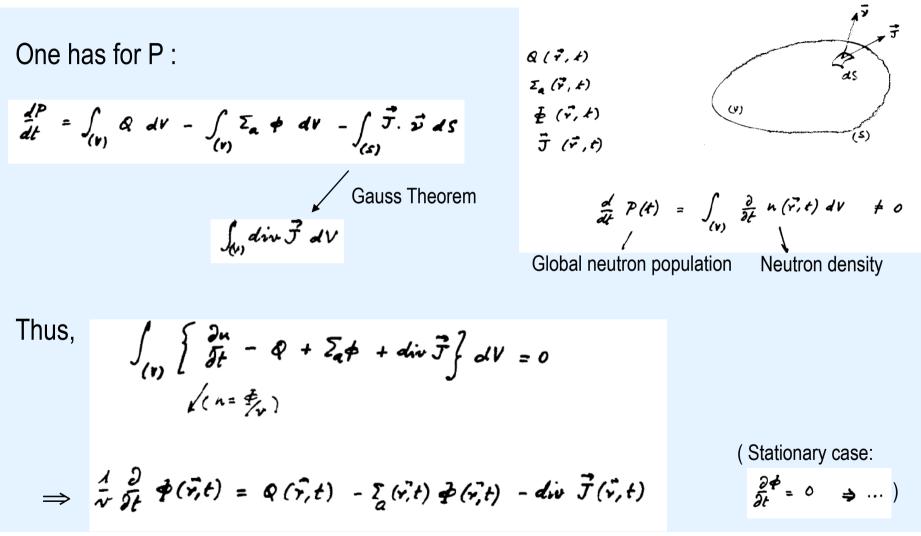
Thus, $(\operatorname{div} \vec{J}) + \Sigma_a \Phi = Q$ where

- \vec{J} , Φ , Q are functions of x, y, z
- Σ_a clearly represents absorption, not total (scattering is not featured)
- The equation is exact (consistent with transport theory)

However, there are 2 unknowns : \vec{J} and Φ

 \Rightarrow A 2nd equation is needed...

Time-dependent Neutron Balance Equation



Fick's Law

Essentially provides the "2nd equation" which is needed (reln. betn. \vec{J} and Φ) \vec{J} = -D. v. grad n = -D. grad Φ

(other similar physical laws... heat conduction, mixing of inhomogeneous solutions, etc.)

 \rightarrow D: Diffusion Coefficient, constant characteristic of the medium ($D \approx \frac{\lambda_t}{3} \approx \frac{1}{\Sigma_t}$)

Derivation can be done on the basis of certain assumptions (*Diffusion Theory*)

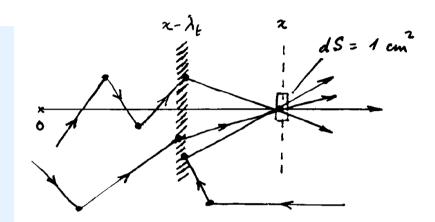
- The medium is not strongly absorbing: $\Sigma_a << \Sigma_s$ $(\Sigma_t \cong \Sigma_s)$
- Scattering is isotropic in the laboratory system of coordinates
- The neutron density (and hence, flux) does not vary significantly over ~ λ_t

i.e.
$$\lambda_t \frac{\partial \Phi}{\partial r} \ll \Phi$$

Qualitative Illustration

- **Consider** ds = 1 cm², \perp OX at x
- $\Box \quad J_x^+, \text{ current from left to right consists} \\ \text{of n's which had their last collision at} \\$

(on average): x - λ_t



$$\rightarrow J_x^+(\mathbf{x}) \propto \Phi(\mathbf{x} - \lambda_t) \quad \text{, i.e.} \quad J_x^+ = \mathbf{k} \cdot \Phi(\mathbf{x} - \lambda_t)$$

i.e.
$$J_x = k \{ \Phi(x - \lambda_t) - \Phi(x + \lambda_t) \} \approx -2 k \lambda_t \frac{\partial \Phi}{\partial r}$$
 (Taylor expansion)
which is consistent with $J_x = -\frac{\lambda_t}{3} \frac{\partial \Phi}{\partial r}$

→ Implied condition...
$$\lambda_t \frac{\partial \Phi}{\partial r} << \Phi$$
, i.e. $\lambda_t <<$ dimensions of system

Diffusion Equation

- 1. Neutron Balance... $dire \vec{J} + \zeta_a \phi = Q$
- 2. Fick's Law... $\vec{J} = \partial q \vec{n} d \phi$

$$\Rightarrow \operatorname{div}\left[\mathcal{D}(\vec{r}) \operatorname{qrad} \phi(\vec{r})\right] - \sum_{a} (\vec{r}) \phi(\vec{r}) + Q(\vec{r}) = 0$$

If the system is homog. (Σ_a , D \rightarrow constants),

$$\partial \nabla^2 \phi - \Sigma_a \phi + \varphi = 0$$

 \Rightarrow Diffusion Equation

Laplacian

 $\nabla^2 \phi = din (grad \phi) = \frac{\partial \phi}{\partial x^2} \frac{\partial \phi}{\partial y^2} \frac{\partial \phi}{\partial x^2}$

One-dimensional cases

- Planar geometry
- Cylindrical geometry (axis of symmetry)
- Spherical geometry (centre of symmetry) ...

 $\nabla^2 \phi = \frac{d^2 \phi}{dz^2}$ $\nabla^2 \phi = \frac{1}{r} \frac{d}{dr} \left(r \frac{d\phi}{dr} \right)$ $\nabla \phi^2 = \frac{1}{\rho^2} \frac{d}{de} \left(e^2 \frac{d\phi}{de} \right)$

Comments - 1

Domain of application of the diffusion equation, very wide

• Describes behaviour of the scalar flux (not just the attenuation of a beam)

Equation mathematically similar to those for other physics phenomena, e.g.

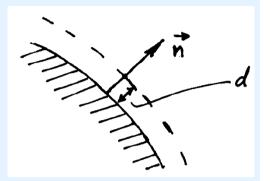
• Poisson's equation in electrostatics (except for the term Q)

Involves partial derivatives of 2nd order (equation type: elliptic)

- Requires provision of an appropriate boundary condition at external surface
- □ For an isolated system (no neutrons entering from the exterior)... $\Phi(S_e) = 0$, where S_e is the "extrapolated" surface
 - Diffusion equation not valid at real surfaces (large local variation of the flux)

Comments - 2

- \Box From transport theory, d $\approx 0.71 \lambda_{t}$
 - d \rightarrow linear extrapolation distance



- □ For a set of homogeneous, contiguous regions
 - Equation in each zone can be considered independently

The solutions can be inter-related via:

- Flux continuity across separation surface (i.e. continuity of the neutron density)
- Continuity of the net current (i.e. no accumulation of neutrons at interface)

Last condition... flux (i.e. density) must be positive

• The net current can be negative...

Point Source, Infinite Medium

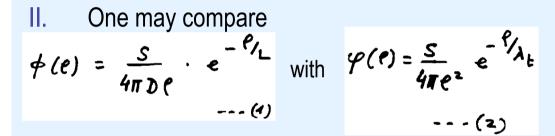
 \Box Consider an infinite, passive medium (Σ_t , Σ_a) Source (S n/s) at centre... spherical symmetry, Q = 0 for $\rho \neq 0$ $\Box \text{ Diffusion equation} \Rightarrow \mathcal{D} \left[\frac{1}{e^2} \frac{d}{de} \left(e^2 \frac{de}{de} \right) \right] - \mathcal{D} = \mathcal{D} \quad \text{, i.e.}$ $\frac{1}{\rho^2} \frac{d}{de} \left(\frac{\rho^2}{de} \frac{d\phi}{de} \right) - \frac{\phi}{r^2} = 0 \quad \text{where} \quad L^2 = \frac{D}{\Sigma_a} = \frac{1}{3\Sigma_r \Sigma_a} \quad \text{(diffusion area)}$ (L: diffusion length) Substituting $\phi(e) = \chi(e)/e \rightarrow \frac{d^2\chi}{de^2} - \frac{\chi}{l^2} = 0$ General solution: $X(t) = A e^{-t/L} + B e^{+t/L}$ i.e. $\phi(e) = \frac{1}{p} \left[A e^{-t_{1}} + B e^{+t_{1}} \right]$

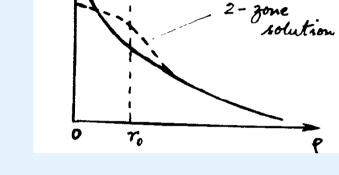
Point Source, Infinite Medium (contd.)

• For
$$P \rightarrow \infty$$
, $p \neq \infty$: $B = 0$
• For determining A, consider the net current at $\rho \rightarrow 0$
 $1 4 \pi e^2$. $\mathcal{J}(e) |_{e \rightarrow 0} = S$
With $J = -\frac{d\Phi}{d\rho}$ (Fick's Law), $-4 \pi D |_{e^2} \frac{d\Phi}{de}|_{e \rightarrow 0} = S$
 $\int (e = A e^{-P/L}) \frac{d\Phi}{de} = -A e^{-P/L}$
Thus, $-4\pi DA [-e^{-P/L} - \frac{P}{L} e^{-P/L}]_{e \rightarrow 0} \Rightarrow A = \frac{S}{4\pi D}$
i.e. $\Phi(e) = \frac{S}{4\pi De} \cdot e^{-P/L}$

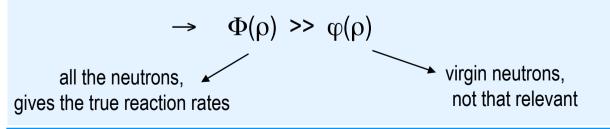
Comments - 1

I. In practice, $\Phi \neq \infty$ at $\rho = 0$ - The source is betn. $\rho = 0$ and $\rho = r_0$





- Φ is the scalar flux, $\ \phi$ the angular flux
- For a weakly absorbing medium (diffusion theory is valid), $L >> \lambda_t$ ($\Sigma_a << \Sigma_t$)



Comments - 2

- For a strongly absorbing medium
 - Eq. (1) is wrong (diffusion theory not valid)
 - Eq. (2) is more correct (exact for $\Sigma_s \rightarrow 0$)
- For an in-between situation ($\Sigma_a \sim \Sigma_s$), neither Eq. (1) nor Eq. (2) is adequate
 - One needs to use the transport equation
- III. The expressions for Φ and J are very different

With
$$\varphi(e) = \frac{S}{4\pi De} \cdot e^{-e_{l_{L}}}$$

 $J(\rho)$ = number of n's traversing 1 cm² of the surface of a sphere of radius ρ

$$= -D \frac{d\phi}{d\rho} = \frac{s}{4\pi} \left[\frac{1}{\rho_1} e^{-\rho_1} + \frac{1}{\rho_1} e^{-\rho_1} \right]$$

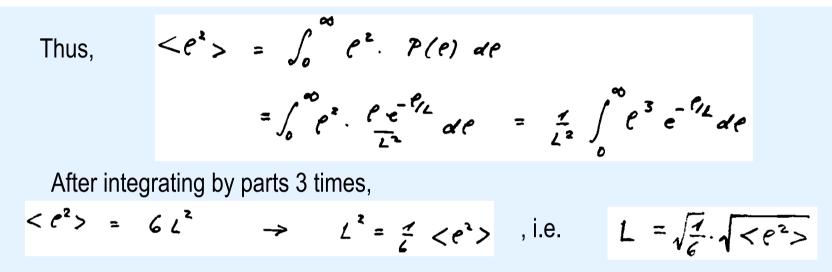
Number traversing the entire sphere = $4\pi e^2 \cdot |\mathcal{J}(e)|$

$$= S \left[1 + \frac{\rho}{L} \right] \cdot e^{-\frac{\rho}{L}}$$

Physical Significance of L

For a point source in an infinite medium, $\oint (e) = \frac{S}{4\pi D e} \cdot e^{-P_{L}}$ In a spherical shell of between radii ρ , ρ + d ρ absorption rate = $\Sigma_a \cdot \phi(e) \cdot 4\pi e^2 de$ $= \frac{\Sigma_a S_e^{-\ell_{l_L}}}{4\pi p e} \cdot 4\pi e^2 de = \left(\frac{\Sigma_a S_e^{-\ell_{l_L}}}{D} \right)^{-\ell_{l_L}} de$ \rightarrow Probability of absorption = $P(\rho)d\rho = \frac{S\rho e^{-\frac{\rho}{L}}}{L^2} \div S = \frac{\rho e^{-\frac{\rho}{L}}}{L^2}$ Note: A. $\int_{0}^{\infty} P(\rho) d\rho = 1$ (probability of being absorbed somewhere...) B. If one considers $\langle \rho \rangle$ or $\sqrt{\langle \rho^2 \rangle}$ this will be quite different from $\langle x \rangle$, i.e. from λ_t

Physical Significance of L (contd.)



Diffusion length \propto square root of the avg. squared distance at which a neutron is absorbed ... There are many scattering events (~ λ_t) that have occurred before

For \$\Sigma_a << S_s\$, \$L >> \$\lambda_t\$...\$ a condition for diffusion theory to be valid
 Role of \$L\$ is much more important than that of \$\lambda_t\$...\$

Summary, Lesson 5

- Neutron current as vector
- Neutron balance for a volume element
- Leakage as function of net current
- □ Fick's Law, conditions for validity
- Diffusion Equation, boundary conditions
- Point source in an infinite medium
- Scalar flux distribution
- Diffusion length (physical significance)