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Abstract

As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention
as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors.
The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide
number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underesti-
mated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can pre-
dict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the
Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up
calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up cal-
culations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-
up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of
error propagation on the Monte Carlo burn-up calculations of 8 · 8 BWR fuel assembly are low up to 60 GWd/t.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The current methods commonly used in commercial
BWR core analysis consist of two separate stages: the
assembly calculation by a lattice physics code at a first
stage, and the core analyses by a three-dimensional neu-
tronic-thermal hydraulic core calculation code using the
assembly constants from the first stage. Recently, deter-
ministic theories such as the current coupling collision
probability method (e.g., LANCER (Ikehara et al.,
2001)) or characteristics method (e.g., CASMO (Edenius
et al., 1991)) have been used to perform assembly calcula-
tions. These deterministic lattice codes have enabled high
accurate assembly calculation. However, they involve
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approximations such as space and energy discretizations,
and their calculation geometries are limited to two dimen-
sions. On the other hand, a continuous energy Monte
Carlo calculation method involves less approximation of
energy and geometries. It can treat three-dimensional het-
erogeneous regions directly. However, the continuous
energy Monte Carlo calculation requires an enormous cal-
culation time to obtain highly accurate assembly calcula-
tions. Therefore, Monte Carlo calculation methods have
been used as reference codes of assembly calculation in
the BWR production calculation field.

High burn-up fuel assemblies have been developed to
reduce the fuel cycle cost. Therefore, recent fuel assembly
designs have been further complicated by high 235U enrich-
ment, high Gd content, and complex shapes in geometry.
In these circumstances, coupled with recent advancement
in computer performance, the continuous energy Monte
Carlo calculation method has garnered attention (Tohjoh
et al., 2005) because of its less reliance on approximation.
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However, Monte Carlo calculation results contain sta-
tistical errors. In the case of single-step Monte Carlo calcu-
lation, these statistical errors can be estimated from the
number of neutron histories. However, the results of
Monte Carlo burn-up calculations include propagated sta-
tistical errors may arise from the variance of nuclide num-
ber densities. Therefore, the errors in Monte Carlo burn-up
calculations evaluated solely on the basis of statistical
errors may be underestimated. Such propagation errors
on the nuclide number densities have been reported (Tak-
eda et al., 1999). In that study, these errors were evaluated
by using a burn-up matrix. And in the case of fast reactors,
Takeda et al. proposed that these errors are relatively smal-
ler than errors of the cross-section libraries. However,
quantitative analysis of propagations of statistical errors
on the nuclide number densities has not been carried out
in their study. Furthermore, the effects of these propaga-
tion errors on the Monte Carlo burn-up calculations have
not been studied.

To make clear this effect of error propagation on the
Monte Carlo burn-up calculations, we here proposed an
equation that can predict the variance of the nuclide num-
ber densities after burn-up calculations, and we verified this
equation from the results of enormous times in Monte
Carlo burn-up calculations. To do this, we executed Monte
Carlo burn-up calculations 400 times by changing only ini-
tial random numbers. We also verified the effect of the
number of burn-up calculation points on variance of
nuclide number densities.

From these verifications, we estimated the errors of the
Monte Carlo burn-up calculations, including both statisti-
cal and propagated errors, under several different neutron
history numbers. Finally, we made clear the effects of error
propagation on Monte Carlo burn-up calculations by com-
paring statistical errors alone versus both statistical and
propagated errors. The results showed that the effects of
error propagation on Monte Carlo burn-up calculations
of an 8 · 8 BWR fuel assembly are low up to 60 GWd/t.

Section 2 describes three case studies on the propagation
of errors examined in this paper. Each case has a different
object. Section 3 proposes the equations that predict these
propagated errors, and we verify these equations by using
the results of large numbers of Monte Carlo burn-up calcu-
lations with different initial random numbers. Section 4 dis-
cusses the effects of the number of burn-up calculations
points on the nuclide number densities of the Monte Carlo
burn-up calculations. This section also verifies this effect
through a comparison of the results of large numbers of
burn up calculations between 20 and 40 burn-up calcula-
tion points. Section 5 examines the propagated errors of
nuclide number densities in the Monte Carlo burn-up cal-
culations of a BWR fuel assembly. It also quantitatively
shows the effects of these propagated errors on the results
of the Monte Carlo burn-up calculations, which are includ-
ing the k-infinity, the corner-rod peaking (CRP), and the
neutron flux. The concluding remarks are given in
Section 6.
2. Calculation cases and conditions

This section describes our approach to this study and
the calculation conditions used. We have executed three
cases of calculations:

Case 1: Burn-up calculations were performed 400 times
under the same calculation conditions except for
changes in the initial random numbers. There were 20
burn-up calculation points and 20,000 neutron histories
per burn-up calculation point.
Case 2: Burn-up calculations were performed 400 times
under the same calculation conditions except for
changes in the initial random numbers. There were 40
burn-up calculation points and 20,000 neutron histories
per burn-up calculation point. The only difference
between Cases 1 and 2 is the number of burn-up calcu-
lation points.
Case 3: Burn-up calculations were performed 10 times
under the same calculation conditions except for
changes in the initial random numbers. There were 20
burn-up calculation points, and the numbers of neutron
histories per burn-up calculation point were 20,000,
200,000, and 2,000,000. (The burn-up calculations were
totally carried out 30 times in Case 3.)

From Case 1, we discuss the mechanism underlying the
propagations of errors of nuclides number densities in Sec-
tion 3. The reaction rate of Monte Carlo calculation has a
normal distribution. These deviations of in reaction rate
reflect the number densities through the burn-up calcula-
tion with exponential functions. Therefore, the number
densities of Monte Carlo burn-up calculations have a
‘‘log-normal’’ distribution after burn-up calculation.

From the comparison of the deviation of the nuclide
number density between Cases 1 and 2, we will describe
the effect of the number of burn-up calculation points on
the variance of the nuclide number densities. We will pre-
dict that the deviation of nuclide number density with rela-
tion to the number of burn-up calculation points.

From Case 3, we will discuss the effects of the deviation
in nuclide number densities on the results of Monte Carlo
burn-up calculations. We will extend the calculation condi-
tions in order to generalize on the effect of deviation in
nuclide number densities on the results of the Monte Carlo
burn-up calculations verified above from Cases 1 and 2. In
Cases 1 and 2, the numbers of neutron histories are very
low, only 20,000. In Case 3, we executed three conditions
of neutron histories per burn-up calculation point:
20,000, 200,000 and 2,000,000 histories. We verify that
the quantitative effects of the propagated error of the
nuclide number densities depend on the neutron histories.

We used the continuous energy Monte Carlo burn-up
calculation code MVP-BURN (Nakagawa et al., 1990; Mori
et al., 1999; Okumura et al., 2000; Nagaya et al., 2005). This
Monte Carlo burn-up calculation code can execute branch
calculations from a base case. Therefore, we have already



Fig. 1. Calculation regions.
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reported the application of this Monte Carlo burn-up calcu-
lation code as a cross-section generator of BWR (Tohjoh
et al., 2005). We used JENDL-3.3 (Shibata et al., 2002) as
the evaluated nuclear data file. The calculation target is
the hot condition of the 8 · 8 with a wide-water-rod fuel
assembly for BWR5. The volume-averaged temperature of
the fuel is 610 �C and the structure of fuel assembly is
286 �C. The in-channel void fraction is 40%, and a uniform
water density distribution was assumed. The burn-up spatial
discretized regions of Gd2O3 rods are annularly divided into
8, and the UO2 rods are not annularly divided. The spatial
discretization of burn-up calculation regions is shown in
Fig. 1. The calculation conditions of this study are summa-
rized in Table 1.

The next section describes the mechanism underlying
error propagation of the nuclide number densities.
Table 1
Assembly calculation conditions

Calculation code The continuous-energy Monte Carlo burn-up code MV

Cross section
library

JENDL-3.3

Energy groups 1st group (fast): 1.0000e+7 � 5.5300e+3 eV
2nd group (resonance): 5.5300e+3 � 6.8250e�1 eV
3rd group (thermal): 6.8250e�1 � 1.0000e�5 eV

History 1 batch: 200, 2000, and 20,000 neutron histories (3 cas
Calculation batch: 120 batches
Skip batch: 20 batches (total effective neutron histories

Temperature Hot condition: 286 �C for structures and water, 610 �C

Void 40% void

Burn-up point 0, 0.2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 20, 30, 40
0, 0.1, 0.2, 0.6, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7
60, 65 (GWd/t) (Total 40 points for Case 2)

Burn-up calculation ‘‘Predictor corrector’’ was adopted for all burn-up calc
3. Error propagation in the number densities of Monte Carlo

burn-up calculation (from Case 1)

The number density of nuclides after the burn-up calcu-
lation is described as follows when variation of these nuc-
lides were dominated by absorption reactions:

Ni ¼ N i�1 exp ðRRiDtiÞ ð1Þ

where Ni is the number density of nuclides at step i of the
burn-up calculation, Ni�1 is that at the previous step, RRi

is the absorption reaction rate of the nuclide, and Dti is the
burn-up period of step i.

The number density of the previous step can be
described as follows:

Ni ¼ N 0 exp ðRR1Dt1Þ exp ðRR2Dt2Þ
� � � exp ðRRi�1Dti�1Þ exp ðRRiDtiÞ ð2Þ

Ni ¼ N 0 exp ðRR1Dt1 þRR2Dt2

þ � � � þRRi�1Dti�1 þRRiDtiÞ ð3Þ

ln
Ni

N 0

� �
¼
X

i

ðRRiDtiÞ ð4Þ

where N0 is the initial number density of the nuclide.
We assume that there is a standard deviation si at the

reaction rate of the burn-up calculation step i. Eqs. (1)–
(4) can be written as follows:

N 0i ¼ N 0i�1 expfðRRi � siÞDtig ð5Þ
N 0i ¼ N 0 expfðRR1 � s1ÞDt1 þ ðRR2 � s2ÞDt2

þ � � � þ ðRRi�1 � si�1ÞDti�1 þ ðRRi � siÞDtig ð6Þ

N 0i ¼ N 0 exp
X

i

ðRRiDtiÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðs2
i Dt2

i Þ
r( )

ð7Þ

ln
N 0i
N 0

� �
¼
X

i

ðRRiDtiÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðs2
i Dt2

i Þ
r

: ð8Þ
P-BURN

e)

are 20,000, 200,000, and 2,000,000)

for fuel pellets

, 50, 60 (GWd/t) (Total 20 points for Case 1, Case 3)
, 7.5, 8, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55,

ulation points
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Fig. 2. Histogram of the 238U number density.
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Substituting Eq. (4) into Eq. (8), the logarithm of the ratio
of the final number density to initial number density,
ln

N 0i
N0

� �
, can be obtained as follows:

ln
N 0i
N 0

� �
¼ ln

Ni

N 0

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðs2
i Dt2

i Þ
r

: ð9Þ

Namely, when there is a standard deviation si at the reac-
tion rate RRi, the logarithm of the ratio of the number den-

sity to initial number density, ln
N 0i
N0

� �
, has a standard

deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðs2
i Dt2

i Þ
p

. In general, a distribution like that
shown above, whose logarithm has a standard distribution
is called a log-normal distribution. The log-normal distri-
bution has been used in the field of finance. It lacks a sym-
metrical shape. In the case of decreasing nuclide number
densities, the rate of the increase

P
iðRRiDtiÞ is negative;

the mode of this log-normal distribution is on the right
side. As we mentioned in Section 2, in Case 1 the distribu-
tion of 238U’s number density at 20 GWd/t is shown in
Fig. 2.

Generally, the variance of the log–normal distribution,
VAR(X), can be written as follows:

VARðX Þ ¼ EðX 2Þ � fEðX Þg2

¼ exp ð2lþ 2S2Þ � exp ð2lþ S2Þ
¼ exp ð2lþ S2Þfexp ðS2Þ � 1g ð10Þ

where l is the mean value of the normal distribution after
the logarithm transformation of this log–normal distribu-
tion and S is the standard deviation of the normal distribu-
tion after the transformation.

In the case of the normal distribution, we can use a nota-
tional system such as A ± a, where A is the mean value and
a is the standard deviation. In this paper, we use the same
notations for the log-normal distribution. From Eqs. (9)
and (10), the standard deviation of the rate of the increase

(or decrease) of the nuclide number density,
N 0i
N0

, after i times

of burn-up calculation can be written as
N 0i
N 0

¼ Ni

N 0

�
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Consequently, after i times burn-up calculations, the
nuclide number density has the standard deviation

N 0
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P
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i Dt2
i Þ

	 

� 1

� �q
.

This equation can be applied only to the nuclides those
decreasing can be written as the absorption reaction of a
single nuclide. This would place one log–normal distribu-
tion on the other log-normal distributions, if there were
several contributions to the generation of the nuclide con-
cerned. However, if there are several components to the
reactions of generating concerned nuclide, we cannot grasp
the practical errors of these reaction rates separately, espe-
cially under the case of the fixed value of burn-up
exposures.

In the case of fixed value of burn-up exposure, the devi-
ations in the number densities of the fissile nuclides are not
in good agreement with Eq. (13), when analyst input the
value of burn-up exposure. This is because the number of
fission reactions is controlled by the value of burn-up expo-
sure. For example, when fission rate obtained in Monte
Carlo calculation is smaller than mean value due to statis-
tical deviation, exposure time is increased to adjust thermal
output (i.e. number of fissions) of current burn-up step;
power normalization is carried out in burn-up calculation.
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The errors in the reaction rates of 235U and 238U with
400 burn-up calculations, Case 1, are shown in Fig. 3.
The errors in reaction rate (A), which is statistically evalu-
ated in Monte Carlo calculations, and those in reaction
rate (B), calculated from the logarithm of the ratio of num-
ber densities, ln

N 0i
N 0i�1

� �
, are plotted in Fig. 3. From this fig-

ure, we can observe that the errors of fissile nuclide 235U,
(A) and (B), are not in good agreement. The error of the
reaction rate (B) is controlled because the number of the
fission reactions is normalized as described above. There-
fore, the actual error (B) is lower than the statistical error
(A). On the other hand, the errors of 238U’s (A) and (B)
are in good agreement with each other.

The results of the relative standard deviations of number
density 235U and 238U are shown in Fig. 4. In this figure
there are the observed relative standard deviations and
the predicted relative standard deviations, which are calcu-
lated by the errors of reaction rates (A) and (B). In the case
of 238U of Fig. 4, the prediction of the relative standard
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Fig. 4. Observed and predicted relative standard deviations of 235U, 238U
number densities.
deviation of the number density is in good agreement with
the observed for both (A) and (B). On the other hand, in
the case of 235U in Fig. 4, the predicted relative standard
deviation using error (A) is overestimated compared with
the observed relative standard deviation because of the
normalized number of the fission reactions. This overesti-
mation is large at BOL because of the large contribution
of 235U to the number of fission reactions. The overestima-
tion at BOL is about 10-fold. This is in good agreement
with the error in reaction rate shown in Fig. 3. The pre-
dicted relative standard deviation using error (B) is in good
agreement with observed relative standard deviations.
From Figs. 3 and 4, we can verify that Eq. (13) is appropri-
ate for the prediction of the relative standard deviation of
nuclide number densities, which follow simple burn-up
chain like Eq. (1).

4. Effect of the number of burn-up calculation points on the

number densities of Monte Carlo burn-up calculations (from

Case 2)

In the Monte Carlo burn-up calculations, the errors of
reaction rate are transformed into the nuclide number den-
sities through the exponential functions, and these errors
are propagated through the burn-up calculations, as we
mentioned in Section 3. In these circumstances, there is a
possibility that the errors of the number densities are
affected by changes in the number of burn-up calculation
points.

Generally speaking, the spectrum of neutron energy
changes continuously during burn-up calculations. How-
ever, we have to execute the burn-up calculation by the dis-
cretized calculation point. Therefore, the results of the
burn-up calculation would be affected by the choice of
burn-up calculation points this is true both for Monte
Carlo and deterministic calculations. However, this change
in results, i.e. discretization effect of neutron spectrum, is
not within the scope of this paper. The question we have
to ask here concerns the statistical error of the number den-
sities of the Monte Carlo burn-up calculation.

To consider these circumstances, we describe the follow-
ing problem, called the symmetric random walk model. For
example, consider starting the n times random walking
from ‘‘0’’ in one dimension. In one random walking, the
point can walk +d distance with 50% likelihood and it
can walk �d distance with 50% likelihood. This problem
is called the random walk model; and, because +d and
�d are equal, the problem is especially called the symmetric
random walk model. The range of existence of the point is
from �nd to +nd after n times random walking. The mean
value l(n) and the variance r2(n) can be written as follows:

lðnÞ ¼ 0 ð14Þ
r2ðnÞ ¼ nd2: ð15Þ

We will consider that the number of random walkings was
changed from n to kn and that the distance was changed
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from d to d
k. After kn times random walking, the range of

existence of the point is unchanged, from �nd to +nd,
and the mean value is also unchanged, l(kn) = 0. The var-
iance can be written as follows:

r2ðknÞ ¼ kn
d
k

� �2

¼ 1

k
nd2: ð16Þ

From Eq. (16), if the number of burn-up calculation points
was multiplied by k, the deviation in nuclide number den-
sity would be divided by

ffiffiffi
k
p

. This symmetric random walk-
ing model can be applied to the number density of Monte
Carlo burn-up calculations. We will verify this effect using
results of Case 2.

As mentioned in Section 3, the nuclide number density
distribution is, strictly speaking, a log–normal distribution.
However, in this section we will demonstrate about the
relation of the number of burn-up calculation points and
deviation in nuclide number density, using the approxima-
tion that the deviation of nuclide number density is in
agreement to a normal distribution. The symmetric ran-
dom walking model can be applied to the distribution of
the number density. To verify this point, we execute 400
Monte Carlo burn-up calculations using different initial
random numbers; this is called Case 2, as mentioned in Sec-
tion 2. In Case 2, the number of burn-up calculation points
is 40, twice that in Case 1. The distributions of the 238U and
244Cm number densities in Cases 1 and 2 are shown in Figs.
5 and 6, respectively. From these figures, we can verify that
increasing the number of burn-up calculation points broad-
ens the span of the number density distributions. From
Fig. 5, we can also confirm that the mode of the 238U num-
ber density is shifted. It is caused by the fact that the dis-
cretized calculation method of burn-up calculation under
the spectrum is continuously changing, as we mentioned
before. However, this shift is not our target in this paper
as described above. The targets of this paper are the devi-
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Fig. 5. Histogram of the 238U number density, (a) Case 1, 20 burn-up
points and (b) Case 2, 40 burn-up points.
ations of the nuclide number densities. The standard devi-
ations of the 238U and 244Cm number densities in Cases 1
and 2 are shown in Figs. 7 and 8, respectively. The pre-
dicted standard deviations from Eq. (16) are shown in these
figures. From these figures, we can confirm that the sym-
metric random-walk model is applicable. The deviation in
the number density would be divided by

ffiffiffi
2
p

when the num-
ber of burn-up calculation points was doubled.

In actual Monte Carlo burn-up calculations, the total
number of neutron histories dominates the calculation cost.
Therefore, we cannot increase the number of burn-up cal-
culation points endlessly; we have to limit the calculation
time reasonably. Then, the increase in the number of
burn-up calculation points causes a reduction in the neu-
tron number histories of each step in the Monte Carlo cal-
culations. When the neutron histories were multiplied by k,
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the deviation in k-infinity would be divided by
ffiffiffi
k
p

. On the
other hand, when the neutron histories were multiplied by
1/k, the deviation in the number density would also be mul-
tiplied by

ffiffiffi
k
p

. However, the sensitivity of the number den-
sities to k-infinity is lower than that of the number of
neutron histories, as described in Section 5. Therefore, a
larger number of neutron histories (a smaller number of
burn-up calculation points) is desirable for the analyses,
which demand highly accurate results of k-infinity. On
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the other hand, a smaller number of neutron histories (a
larger number of burn-up calculation points) is desirable
for the PIE analyses, which demand highly accurate results
of the nuclide number densities.

5. Accuracy of the Monte Carlo burn-up calculations
including propagated errors of the nuclide number densities

(from Case 3)

5.1. Verification of the equations for propagation errors

In Section 3 we verified the mechanism underlying the
error propagation of nuclide number densities, and in Sec-
tion 4 we verified the effect of the number of burn-up cal-
culation points on the nuclide number densities.
However, the neutron histories of those verifications were
very low – only 20,000 – because of the large number
(400) of executions of burn-up calculations using different
initial random numbers. This section verifies that mecha-
nisms and those effects described in previous sections are
generally applicable to Monte Carlo burn-up calculations
with various number of neutron histories. Furthermore,
we will obtain the accuracy of Monte Carlo burn-up calcu-
lations on a BWR fuel assembly, including the propagated
errors of the nuclide number densities.

We executed three sets of calculations, each including 10
burn-up calculations using different initial random num-
bers. The only different point among three sets is the num-
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ber of neutron histories: 20,000, 200,000 and 2,000,000.
This was Case 3 in Section 2.

In this section, we call the errors of k-infinity, the corner-
rod peaking (CRP), and neutron flux, ‘‘Observed (Statisti-
cal + Propagated)’’, which obtained from the statistical
analysis of these 10 burn-up calculations. The Observed (Sta-
tistical + Propagated) errors include not only statistical
errors at particular burn-up point but also those of propa-
gated errors during burn-up calculations. To the contrary,
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the errors of k-infinity, CRP, and neutron flux evaluated
from statistical analysis of Monte Carlo calculations are
defined as ‘‘Calculated (Statistical)’’. The Calculated (Statis-
tical) errors include statistical errors only at particular burn-
up point, and they are listed in the output of MVP-BURN.

We call the error of nuclides number densities
‘‘Observed (Propagated)’’, which obtained from the statis-
tical analysis of these 10 burn-up calculations. To the con-
trary, we call the error of nuclides number densities
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‘‘Predicted (Propagated)’’, which is obtained from Eq. (13).
It is inferred from Sections 3 and 4 that the Observed
(Propagated) errors and the Predicted (Propagated) errors
of number density are in good agreement.

The Observed (Statistical + Propagated) relative stan-
dard deviations of k-infinity, corner-rod peaking (CRP),
and neutron flux and are shown in Fig. 9. This figure also
shows that the Observed (Propagated) relative standard
deviations of the nuclide number densities. The Observed
(Propagated) errors of the nuclide number densities
depend not only on neutron histories but also on burn-
up exposure. On the other hand, the Observed (Statisti-
cal + Propagated) errors of k-infinity, CRP, and flux
became larger depending only on the neutron histories.
Strictly speaking, these Observed (Statistical + Propa-
gated) errors would be large with relation to the burn-
up exposure due to the propagation error of number
density. However, they do not depend clearly on the
burn-up exposures due to the lower effect of the propaga-
tion errors than statistical errors. The relative standard
deviations of those parameters at the EOL are roughly
in agreement with the BOL. This indicates that the errors
in those parameters (k-infinity, peaking factors, and flux)
can be predicted in the rough from statistical errors alone
due to the low effect of the propagations on these param-
eters. The errors in the Observed (Statistical + Propa-
gated), Calculated (Statistical) and O/C (Observed
(Statistical + Propagated)/Calculated (Statistical)) for
k-infinity, flux, and CRP are shown in Fig. 10. From this
figure, we can understand that O/C (Observed (Statisti-
cal + Propagated)/Calculated (Statistical)) is roughly 1.0
from BOL to EOL. Nevertheless the propagated errors
of nuclide number densities increase as the burn-up expo-
sure increases. The reason why these Observed (Statisti-
cal + Propagated) errors do not dependent on burn-up
exposure, is that the effect of the propagated errors of
nuclides number densities to k-infinity is much lower than
the effects of the neutron histories as we mentioned
below.

Next, we again verify Eq. (13) described in Section 3.
The Observed (Propagated) and the Predicted (Propa-
gated) errors from Eq. (13) of the 235U and 238U are shown
in Figs. 11 and 12, respectively. In these figures, the reac-
tion rates were calculated from the logarithm of the ratio

of number densities, ln
N 0i

N 0i�1

� �
, which were called (B) in Sec-

tion 3. From these figures, the errors of the Predicted
(Propagated) and Observed (Propagated) are in good
agreement. We can consider Eq. (13) reasonable for these
nuclides.
5.2. Verification of the effects of propagation errors on

Monte Carlo burn-up calculations through sensitivity

analyses

In this section, we verify the sensitivity of the statistical
and propagated errors of the nuclide number density to the
results of the Monte Carlo burn-up calculations. As men-
tioned above, Eq. (13) can predict the errors in the nuclide
number densities after burn-up calculations. However, this
equation is applicable to the nuclide number densities
whose reactions consist of single absorption reactions. In
case of the multiple reactions are included in the absorp-
tion reactions, and under the fixed burn-up exposure calcu-
lations, these errors in number densities are overestimated
as in Fig. 4. Therefore, we use the fitting equations to pre-
dict the statistical and propagated errors of the fissile
nuclide number densities.
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The dominant nuclides in the results of k-infinity are
major absorption nuclide 238U and major fissile nuclides
235U, 239Pu, and 241Pu. However, as shown in Fig. 12, the
errors of the number density of 238U are very low because
of its large initial number density. Therefore, we use equa-
tions that fit from the total number densities of 235U, 239Pu,
and 241Pu. The (Propagated) errors are shown in Fig. 13. In
this figure, we show the equations of the fissile number den-
sity fit depend to the burn-up exposures, and several neu-
tron histories.

We also show the sensitivity of these fissile nuclides in
Fig. 14. This figures compares the results of the sensitivity
analyses of the total number densities of 235U, 239Pu, and
241Pu to the results of k-infinity in the deterministic assem-
bly calculation. The calculation code of this sensitivity anal-
ysis is NEUPHYS-C. NEUPHYS-C calculates the effective
macroscopic cross sections depending on the collision prob-
ability method, and execute the lattice calculation depend
on the diffusion theory. The accuracy of this assembly cal-
culation code is verified through the in-core management
of the HAMAOKA-2 and 3. From Fig. 14, we can observe
that the sensitivity of the fissile number density to k-infinity
is small. The effect of a 0.1% change in fissile number density
(e.g., for the 3 wt% UO2 fuels, this means not 3.3 wt% but
3.003 wt%.) on k-infinity is only about 0.05% Dk.

Section 4 showed the effects of the number of burn-up
calculation points on nuclide number densities. The devia-
tion in the nuclide number densities would be divided byffiffiffi

k
p

if the number of burn-up calculation points was multi-
plied by k. On the other hand, the number of neutron his-
tories also affects the results for k-infinity. The deviation in
k-infinity would be divided by

ffiffiffi
k
p

if the number of neutron
histories was multiplied by k. There is a trade-off between
the number of the calculation points and the number of
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Fig. 13. Total (Propagated) errors of fissile number density, (a) 20
neutron histories per burn-up step. However, the sensitivity
of the fissile number densities is half that of the neutron his-
tories, as we shown in Fig. 14. From this figure, we can
understand that a larger number of neutron histories (a
smaller number of burn-up calculation points) is desirable
for the analyses, which demand highly accurate results of
k-infinity, as we mentioned in Section 4.

From the errors of the fissile number densities shown in
Fig. 13 and the sensitivity of these fissile number densities
shown in Fig. 14, we can predict the dependence of the
total statistical and propagated errors on the burn-up
exposures. The dependencies of the Statistical + Propa-
gated, Statistical, and (Statistical + Propagated)/(Statisti-
cal) errors on the neutron histories are shown in Table 2
and Fig. 15. From Fig. 10, we could not observe clearly
the effects of the propagations due to the lower effect of
the propagations than statistical errors. Actually, Fig. 15
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Table 2
‘‘Statistical + Propagated’’, Statistical, and (Statistical + Propagated)/(Statistical) errors of k-infinity

Burn up
(GWd/t)

2,000,000 200,000 20,000

ND
(%)

Prop. error
(%dk/k)

Static
error (%)

S + P
error (%)

(S + P)/
(S)

ND
(%)

Prop. error
(%dk/k)

Static
error (%)

S + P
error (%)

(S + P)/
(S)

ND
(%)

Prop. error
(%dk/k)

Static
error (%)

S + P
error (%)

(S + P)/
(S)

0 0.0005 0.0009 0.048 0.048 1.00 0.0007 0.0010 0.138 0.138 1.00 0.0010 0.0012 0.461 0.461 1.00
0.2 0.0006 0.0010 0.052 0.052 1.00 0.0010 0.0012 0.129 0.129 1.00 0.0018 0.0017 0.457 0.457 1.00
1 0.0009 0.0012 0.043 0.043 1.00 0.0024 0.0020 0.126 0.126 1.00 0.0052 0.0035 0.388 0.388 1.00
2 0.0013 0.0014 0.040 0.040 1.00 0.0042 0.0029 0.129 0.129 1.00 0.0096 0.0059 0.363 0.363 1.00
3 0.0018 0.0016 0.041 0.042 1.00 0.0061 0.0039 0.148 0.148 1.00 0.0142 0.0083 0.343 0.343 1.00
4 0.0023 0.0019 0.043 0.043 1.00 0.0080 0.0050 0.103 0.103 1.00 0.0190 0.0109 0.374 0.374 1.00
5 0.0028 0.0022 0.046 0.046 1.00 0.0100 0.0060 0.100 0.100 1.00 0.0240 0.0136 0.316 0.317 1.00
6 0.0033 0.0024 0.044 0.044 1.00 0.0120 0.0071 0.112 0.112 1.00 0.0292 0.0164 0.286 0.287 1.00
7 0.0038 0.0027 0.038 0.038 1.00 0.0141 0.0083 0.103 0.103 1.00 0.0346 0.0194 0.297 0.298 1.00
8 0.0043 0.0030 0.044 0.044 1.00 0.0162 0.0094 0.108 0.108 1.00 0.0402 0.0224 0.332 0.332 1.00
9 0.0049 0.0033 0.037 0.037 1.00 0.0184 0.0106 0.097 0.097 1.01 0.0460 0.0255 0.277 0.278 1.00

10 0.0055 0.0036 0.039 0.039 1.00 0.0207 0.0118 0.098 0.099 1.01 0.0520 0.0287 0.259 0.260 1.01
12 0.0067 0.0043 0.033 0.033 1.01 0.0254 0.0144 0.089 0.091 1.01 0.0646 0.0356 0.263 0.266 1.01
14 0.0081 0.0050 0.035 0.035 1.01 0.0304 0.0171 0.089 0.091 1.02 0.0780 0.0428 0.303 0.306 1.01
16 0.0095 0.0058 0.032 0.032 1.02 0.0356 0.0199 0.083 0.085 1.03 0.0922 0.0505 0.240 0.246 1.02
20 0.0125 0.0074 0.033 0.034 1.02 0.0467 0.0259 0.097 0.101 1.03 0.1230 0.0671 0.263 0.271 1.03
30 0.0215 0.0123 0.031 0.034 1.07 0.0787 0.0432 0.108 0.117 1.08 0.2140 0.1162 0.302 0.324 1.07
40 0.0325 0.0182 0.045 0.049 1.08 0.1167 0.0637 0.109 0.127 1.16 0.3250 0.1762 0.321 0.366 1.14
50 0.0455 0.0252 0.039 0.046 1.19 0.1607 0.0874 0.097 0.131 1.35 0.4560 0.2469 0.337 0.418 1.24
60 0.0605 0.0333 0.039 0.051 1.32 0.2107 0.1144 0.097 0.150 1.55 0.6070 0.3284 0.369 0.494 1.34
70 0.0775 0.0425 0.039 0.058 1.48 0.2667 0.1447 0.097 0.174 1.80 0.7780 0.4208 0.369 0.560 1.52
80 0.0965 0.0528 0.039 0.066 1.68 0.3287 0.1782 0.097 0.203 2.09 0.9690 0.5239 0.369 0.641 1.74
90 0.1175 0.0641 0.039 0.075 1.92 0.3967 0.2149 0.097 0.236 2.43 1.1800 0.6379 0.369 0.737 2.00

100 0.1405 0.0765 0.039 0.086 2.20 0.4707 0.2548 0.097 0.273 2.81 1.4110 0.7626 0.369 0.847 2.30

ND (%), relative standard deviation of total fissile number densities; Prop. error (%dk/k), propagated errors; S + P error (%), Statistical + Propagated errors; (S + P)/S, (Statistical + Propagated)/
(Statistical) errors.
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Fig. 15. Statistical + Propagated, Statistical and (Statistical + Propa-
gated)/(Statistical) errors of k-infinity, (a) 20,000 histories, (b) 200,000
histories, and (c) 2,000,000 histories.
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Fig. 16. Accuracy of the Monte Carlo burn-up calculation for the BWR
fuel assembly at 20 GWd/t.
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demonstrates that the effect of the Statistical + Propagated
errors on the 8 · 8 BWR assembly is only about 7% that of
the MOL (30 GWd/t), due to the quantitative analysis of
propagations and statistical errors. This means that the
effect of the statistical error propagation of Monte Carlo
burn-up calculations is not important to the present
BWR fuel assemblies, because the reactivity of the core is
dominated by the young fuel bundles like fresh or once-
burned fuels. However, for the future high burn-up fuels,
such as those exceeding 100 GWd/t, the Monte Carlo
burn-up calculation needs to take into consideration the
propagated errors through the nuclide number densities.

From Figs. 9–15, we can see that the results of k-infin-
ity, CRP, and flux do not depend on the propagation
errors. We have also found that the errors of the nuclide
number densities depend on the burn-up exposure. To
define these errors, the dependence of the accuracy of
these parameters on the neutron histories is shown in
Fig. 16. In this figure, the accuracy of each parameter is
at 20 GWd/t. The figure shows that we can find the rea-
sonable neutron histories depending on the necessary cal-
culation accuracy without over cost of the Monte Carlo
burn-up calculations.

6. Conclusions and recommendations

To make clear the effects of error propagations on
Monte Carlo burn-up calculations, we studied the mecha-
nism underlying such propagations and we verified this
effect quantitatively.

First, we proposed an equation that can predict the var-
iance in the nuclide number densities after burn-up calcula-
tions, and we verified this equation by performing huge
numbers of Monte Carlo burn-up calculations using differ-
ent initial random numbers. The nuclide number densities
of the Monte Carlo burn-up calculations have a log-normal
distribution, which is widely used in the field of finance.
The proposed equations are applicable to general Monte
Carlo burn-up calculations.

We also verified the effect of the number of burn-up cal-
culation points on the nuclide number densities. The devia-
tion in the nuclide number densities would be divided by

ffiffiffi
k
p

if the number of calculation points is multiplied by k. This
sensitivity is equal to the effect of the neutron histories on
k-infinity. However, the sensitivity of the nuclide number
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density to the results of k-infinity is only half as great as the
sensitivity of the neutron histories. Therefore, it is desirable
to reduce the number of burn-up calculation points for
analyses that require highly accurate estimation of k-infin-
ity. On the other hand, it is desirable to reduce the number
of neutron histories for the analyses that require highly
accurate of nuclide number densities, like PIE analyses.
This effect of the number of calculation points is applicable
to the general Monte Carlo burn-up calculations.

Finally, based on these verifications, we have estimated
the Monte Carlo burn-up calculation errors, including both
statistical and propagated errors, by comparing statistical
errors alone versus both statistical and propagated errors.
These comparisons revealed that the effects of error propa-
gation on the Monte Carlo burn-up calculations of the
8 · 8 BWR fuel assembly are low up to 60 GWd/t. How-
ever, for future high burn-up fuels, such as those exceeding
100 GWd/t, Monte Carlo burn-up calculations must take
propagated errors into consideration.
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