Lesson 9: Multiplying Media (Reactors)

- Multiplication Factors
- Reactor Equation for a Bare, Homogeneous Reactor
- Geometrical, Material Buckling
- Spherical, Slab Reactors
- Cylindrical Reactor
- Absolute Value of Flux
- Maximum-to-Average Flux Ratio
- Comments on Criticality Condition
Media Containing Fuel

- Neutron propagation considered in passive media till now
 - Characterised by Σ_a, Σ_t (or Σ_s), ...
 - External neutron source(s)

- For a medium containing fissile material, one has a source per unit volume:

$$Q_f(\vec{r}) = \bar{\nu} \cdot \Sigma_f(\vec{r}) \cdot \phi(\vec{r})$$

 - arising from fissions

 - Here, Q_f is not a part of the data provided, but rather is dependent on the flux, i.e. on the sought solution itself

- The neutronics description yields one or several homogeneous equations
 - Stationary solution exists only if a certain criticality condition is satisfied by the geometrical and material characteristics of the system
Media Containing Fuel (contd.)

- For the critical state: productions = absorptions + leakage
 - Condition ~ independent of the flux
 (all three “reaction rates” vary in about the same proportions)

- We will first consider a reactor which is homogenous and bare
 - Isolated zone, without a “reflector” or a “blanket” (i.e. just the “core”)

- Treatment will first be one-group
 - Monoenergetic neutrons (e.g. thermal with appropriately averaged cross-sections)

- Later will be considered
 - Multizone reactors (e.g. with a reflector, i.e. an outer zone of pure moderator)
 - Multigroup theory (basis used, in most practical cases, for numerical calculations)
 - Certain aspects of the “heterogeneity” of the reactor lattice
 (heterogeneous unit-cell: fuel/moderator/...
Multiplication Factors

- For the infinite medium, in general

\[
k_\infty = \frac{\text{production}}{\text{absorption}} = \frac{\bar{\Sigma} \cdot S_f}{A}
\]

with

\[
\begin{align*}
\bar{S} &= \int \varphi \varphi' \, dv \\
A &= \Sigma_a \int \varphi \varphi' \, dv
\end{align*}
\]

\[
= \bar{\Sigma} \cdot \frac{\Sigma_f}{\Sigma_a}
\]

with

\[
\begin{align*}
\Sigma_f &= (\Sigma_f)_e \\
\Sigma_a &= (\Sigma_a)_e + (\Sigma_a)_p
\end{align*}
\]

\[
\eta_c = \left(\bar{\Sigma} \cdot \frac{\Sigma_f}{\Sigma_a} \right)_e \quad \text{and} \quad f = \frac{(\Sigma_a)_e}{(\Sigma_a)_e + (\Sigma_a)_p}
\]

\[
\eta_c > 1 \quad \text{and} \quad f < 1
\]
Multiplication Factors (contd.)

- $\eta_c \Rightarrow$ fuel multiplication factor
- $f \Rightarrow$ utilisation factor (for the homogeneous mixture)

\[
f = \frac{(\Sigma_a)_c}{(\Sigma_a)_c + (\Sigma_a)_f}
\]

\[
= \frac{N_c \sigma_{ac}}{N_c \sigma_{ac} + N_m \sigma_{am} + N_g \sigma_{ag}}
\]

moderator

structure (cladding, etc.)

- For a heterogeneous unit-cell, one needs to consider that the flux is depressed within the fuel region…
System of Finite Size

- For the infinite medium: \(k_\infty = \eta_c \cdot f \)
- This corresponds to \(k_\infty = \eta_c \cdot f \cdot \epsilon \cdot p \), with \(\epsilon = p = 1 \)
 - All the neutrons have the same energy
 - There are neither resonance absorptions, nor fast fissions
- For the finite system, one has the effective multiplication factor

\[
\eta^{\text{production}} = \frac{\eta^{\text{absorption + leakage}}}{A + F} = \frac{\eta^{\text{absorption}}}{A + F} = \frac{\eta^{\text{production}}}{A} \cdot \left(\frac{A}{A + F} \right)
\]

\(k_{\text{eff}} = k_\infty \cdot P_{NF} \)

where \(P_{NF} = \frac{A}{A + F} \) \(\Rightarrow \) Non-leakage probability
System of Finite Size (contd.)

- Three cases to be considered:
 - \(k_{\text{eff}} = 1 \) \(\Rightarrow \) critical reactor (self-sustaining chain reaction, constant flux)
 - \(k_{\text{eff}} > 1 \) \(\Rightarrow \) supercritical reactor (divergent reaction, increasing flux)
 - \(k_{\text{eff}} < 1 \) \(\Rightarrow \) subcritical reactor (convergent reaction, decreasing flux)

- \(k_{\text{eff}} \) \(\Rightarrow \) most important single parameter for the functioning of a reactor

- Important to note: \(k_{\text{eff}} < k_\infty < \eta_c < \bar{\nu} \)
Equation for the Critical Reactor

- One uses the 1-group diffusion equation for the stationary case (critical reactor):
 \[D \nabla^2 \phi - \Sigma_a \phi + Q = 0 \]

- Thereby:
 \[Q = Q_f = \vec{\Sigma}_f (S_f / \chi) = \vec{\Sigma}_f \cdot R_f = \vec{\Sigma}_f \cdot \Sigma_f \phi \]

- Thus,
 \[D \nabla^2 \phi + (\vec{\Sigma}_f - \Sigma_a) \phi = 0 \quad \Rightarrow \quad \nabla^2 \phi + \left[\frac{\vec{\Sigma}_f}{\Sigma_a} - \frac{1}{\Sigma_a} \right] \phi = 0 \]

- Eqn. homogeneous
 - Can be solved for a given geometry,
 - Condition to be satisfied can be identified

- Simplest systems... homogeneous spherical reactor, slab reactor

- One-group Reactor Equation
- Material Buckling
 (depends only material properties)
Spherical Reactor

- One has

\[
\frac{1}{\rho^2} \frac{d}{d\rho} \left(\rho^2 \frac{d\Phi}{d\rho} \right) + B^2_m \Phi = 0
\]

with \(B^2_m = \frac{k_{o-1}}{L^2} \)

(positive sign, cf. passive medium with point source)

Using \(\Phi(\rho) = \frac{x(\rho)}{\rho} \),

\[
\frac{d^2x}{d\rho^2} + B^2_m x = 0
\]

\[
x(\rho) = A \sin B_m \rho + C \cos B_m \rho
\]

, i.e.

\[
\Phi(\rho) = A \cdot \frac{\sin B_m \rho}{\rho} + C \cdot \frac{\cos B_m \rho}{\rho}
\]

- For the finite system:

1. \(\Phi \neq \infty \) at \(\rho = 0 \) \(\Rightarrow \) \(C = 0 \)

2. \(\Phi = 0 \) at \(\rho = R+d = R + 0.71 \lambda_t \), i.e. \(\sin \{B_m (R+d)\} = 0 \)
Spherical Reactor (contd.)

- From the condition \(\sin \{B_m(R+d)\} = 0 \):
 \[B_m = B_i = \frac{i\pi}{R + d} \text{ for } i = 1, 2, \ldots \]

- For the critical reactor, only \(i = 1 \) is valid
 - Smallest eigenvalue
 \(\Rightarrow \) **Fundamental Mode**

- Other solutions: higher harmonics
 - Exist only in a subcritical system
 - E.g. near the external source

- Critical condition for the spherical reactor is thus:
 \[B_m^2 = B^2 = \left(\frac{\pi}{R + d} \right)^2 \]
 Geometrical Buckling
 (depends only on system dimensions)
Spherical Reactor (contd.2)

- The flux distribution is:
 \[\phi(\varepsilon) = \frac{A}{\varepsilon} \sin \left(\frac{\pi \varepsilon}{R + d} \right) \]

- For a given medium (specific values of \(B_m^2, d \)), R is determined by the criticality condition
 - Critical radius:
 \[R_c = \left(\frac{\pi}{B_m} \right) - d \]
 - Critical mass:
 \[M_c = \frac{4}{3} \pi R_c^3 \cdot \rho \]

- Conversely, if the size (R) is fixed, the material properties need to be identified which yield the appropriate \(B_m^2 \) (material buckling)…
 - E.g. adjust the enrichment, i.e. \(k_\infty \)
Comments

- For a bare homogeneous reactor, the criticality condition demands an eigenvalue search for the reactor equation:
 \[\nabla^2 \phi + B_m^2 \phi = 0 \]
 - Eigenvalues need to go to zero at the extrapolated outer surface

- The square of the smallest eigenvalue: \(B^2\) (geometrical buckling)

- Criticality condition: \(B_m^2 = B^2\)

- Flux distribution: proportional to the eigenfunction corresponding to \(B^2\)
 - Absolute level of the flux not yet known
 - A constant \(\lambda\) (in the example considered) remains undetermined, depends on the power (determined, in turn, by technological constraints…)

Neutronics allows us to determine the criticality condition and the spatial distribution of the flux, but does not fix the latter’s absolute value…
Slab Reactor

- System infinite in the \(X, Y \) directions
- Height \(H \)
- Flux, function only of \(z \)

Reactor Equation:

\[
\frac{d^2 \phi}{dz^2} + B^2 \phi = 0
\]

General solution:

\[
\phi(z) = A \cos Bz + C \sin Bz
\]

Flux, symmetric relative to plane \(z = 0 \) \((d\phi/dz = 0 \text{ at } z = 0) \)

\Rightarrow \quad C = 0
Thus, \(\phi(z) = A \cos Bz \)

Condition \(\Phi = 0 \) at \(\frac{H}{2} + d \) yields as eigenvalues:

\[
B_i = (2i+1) \cdot \left[\frac{\pi}{2 \left(\frac{H}{2} + d \right)} \right]
\]

with \(i = 0, 1, 2, \ldots \)

Square of the smallest eigenvalue (\(i = 0 \))

\[
B^2 = \left(\frac{\pi}{H+2d} \right)^2
\]

(geometrical buckling)

Flux distribution:

\[
\phi(z) = A \cos \left(\frac{\pi z}{H+2d} \right)
\]
Cylindrical Reactor

For a cylindrical reactor of height H and radius a, the Critical Reactor Equation is:

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{\partial^2 \phi}{\partial z^2} + B^2 \phi = 0$$

With the assumption $\phi(r,z) = R(r) \cdot Z(z)$,

$$\frac{1}{R} \left[\frac{d^2 R}{dr^2} + \frac{1}{r} \frac{dR}{dr} \right] + \frac{1}{Z} \frac{d^2 Z}{dz^2} = -B^2$$

- \downarrow function of r
- \downarrow function of z
- $-\alpha^2$
- $-\beta^2$

constant
Thus,

\[\frac{d^2 Z}{dz^2} + \alpha^2 Z = 0, \quad \cdots (1) \]

& \quad B^2 = \alpha^2 + \beta^2 \quad \cdots \left\{ \begin{array}{c} \alpha^2 \to \text{axial buckling} \\ \beta^2 \to \text{radial buckling} \end{array} \right.

From (1), \quad Z(k) = A' \cos \alpha z, \quad \text{and with} \quad \phi = 0 \quad \text{at} \quad L = \frac{k}{2} + d, \quad \alpha = \frac{\pi}{H+2d} \quad \text{(smallest eigenvalue)}

From (2), \quad R(r) = A'' \left[J_0(\beta r) \right] \quad (\gamma \text{ not applicable... } \phi \neq -\infty)

\text{and with} \quad \phi = 0 \quad \text{at} \quad r = a+d, \quad \beta = \frac{2.405}{a+d} \quad \text{(smallest eigenvalue)}
Cylindrical Reactor (contd.2)

Thus,
\[\phi(r, \theta) = A \cdot J_0 \left(\frac{2.405r}{a+d} \right) \cdot \cos \left(\frac{\pi z}{H+2d} \right) \]

and
\[B^2 = \alpha^2 + \beta^2 = \left(\frac{2.405}{a+d} \right)^2 + \left(\frac{\pi}{H+2d} \right)^2 \]

Comments:

The criticality condition implies:
\[B^2 = B_m^2 = \frac{k_{\infty} - 1}{\lambda^2} \] (material buckling)

(i) If \(H \) is so small that \(\left(\frac{\pi}{H+2d} \right)^2 > B_m^2 \), even \(a \to \infty \) does not suffice...
\[\Rightarrow \text{System remains subcritical} \quad (B^2 > B_m^2, \ldots) \]

(ii) Similarly, if \(a \) is too small, \(\left(\frac{2.405}{a+d} \right)^2 > B_m^2 \)
\[\Rightarrow \text{Even with } H \to \infty, \quad B^2 > B_m^2, \quad k_{\text{eff}} < 1 \ldots \]
Cylindrical Reactor (contd.3)

(iii) There are minimal values for H, a

\[
\alpha_{\text{max}}^2 = \left(\frac{\pi}{H_{\text{min}} + 2d} \right)^2 = B_m^2
\]
\[\Rightarrow H_{\text{min}} = \frac{\pi}{B_m} - 2d\]

\[
\beta_{\text{max}}^2 = \left(\frac{2.405}{a_{\text{min}} + d} \right)^2 = B_m^2
\]
\[\Rightarrow a_{\text{min}} = \frac{2.405}{B_m} - d\]

(iv) Many combinations of H, a for the critical state
- Shaded area corresponds to supercritical states
 (e.g. power reactor at “start-of-cycle”)
Absolute Flux value

- For a spherical reactor, if one neglects d

$$\phi(e) \approx \frac{A \sin \left(\frac{\pi e}{R}\right)}{e}, \quad \text{i.e.} \quad R \approx R_e = R + d$$

"extrapolated radius"

- Constant A is determined by the reactor power

$$P = \int_0^R E_f \cdot \Sigma_f \cdot \phi(e) \cdot 4\pi e^2 \, de = 4\pi A \cdot E_f \cdot \Sigma_f \int_0^R e^2 \sin \left(\frac{\pi e}{R}\right) \, de$$

$$= 4\pi A \cdot E_f \cdot \Sigma_f \cdot \frac{R^2}{\pi}$$

$$\Rightarrow A = \frac{P}{4R^2 \cdot E_f \cdot \Sigma_f}$$

$$\Rightarrow \phi(e) = \frac{P}{4R^2 \cdot E_f \cdot \Sigma_f} \cdot \left[\frac{\sin \left(\frac{\pi e}{R}\right)}{e} \right]$$
Absolute Flux value (contd.)

- For a slab reactor

$$\phi(z) \approx A \cos \left(\frac{\pi z}{H} \right)$$

with

$$H \sim H_e = H + 2d$$

Per cm\(^2\) of the slab,

$$P'' = \int_{-H/2}^{H/2} E_f \cdot \Sigma_f \cdot \phi(z) \cdot (1. dz)$$

watts/cm\(^2\)

$$= E_f \cdot \Sigma_f \cdot \int_{-H/2}^{H/2} A \cos \left(\frac{\pi z}{H} \right) dz$$

$$= A \cdot E_f \cdot \Sigma_f \cdot \frac{e^H}{\pi}$$

$$\Rightarrow A = \frac{\pi P''}{2H \cdot E_f \Sigma_f}$$

$$\Rightarrow \phi(z) = \frac{\pi P''}{2H \cdot E_f \Sigma_f} \cdot \cos \left(\frac{\pi z}{H} \right)$$

- For a cylindrical reactor, one can show:

$$\Rightarrow \phi(z) = \frac{2.405 \pi P}{4 \cdot E_f \Sigma_f \cdot J_0 \left(\frac{2.405r}{a} \right)} \cdot J_0 \left(\frac{2.405z}{a} \right) \cdot \cos \left(\frac{\pi z}{H} \right)$$
(\frac{\Phi_{\text{max}}}{\overline{\Phi}}) \text{ Ratio}

- The flux distribution determines the power distribution
 - Reactor homogeneous... constant Σ_f

- The maximum-to-average ratio, same for flux, power

- For bare, homogeneous reactors, flux always maximum at centre, varies strongly (going to zero at extrapolated surface)
 - In practice, one has a reflector and/ or several different zones in the reactor, which render the flux distribution flatter...
(\(\Phi_{\text{max}} / \Phi \)) \text{ Ratio (Examples)}

\(\Phi_{\text{max}} = \Phi \) \quad \text{at centre of system (bare, homogeneous reactor)}

\[
\Phi = \frac{1}{V} \int \Phi \, dV = \frac{1}{V} \cdot \frac{P}{E_f \Sigma_f}
\]

Spherical Reactor

\[
\Phi_{\text{max}} \rightarrow \lim_{\rho \to 0} \left[\frac{A \sin \frac{\pi \rho}{R}}{\rho} \right] = \frac{A \pi}{R} = \frac{\pi P}{4 R^2 E_f \Sigma_f}
\]

\[
\Phi = \frac{P}{V \cdot E_f \Sigma_f} \quad \frac{P}{3 \pi R^2 \cdot E_f \Sigma_f} = \frac{3 P}{4 R^2 E_f \Sigma_f}
\]

\[
\Phi_{\text{max}} \rightarrow \frac{\pi^2}{3} \cong 3.29
\]

Slab Reactor

\[
\lim_{\rho \to 0} \left[A \cos \frac{\pi \rho}{H} \right] = A = \frac{\pi^2 P''}{2 H \cdot E_f \Sigma_f}
\]

\[
\frac{P''}{(1-H) \cdot E_f \Sigma_f} = \frac{P''}{H \cdot E_f \Sigma_f}
\]

\[
\frac{\pi}{2} \cong 1.57
\]
Comments on Criticality Condition

\[B_n^2 = \frac{k_{\infty} - 1}{L^2} = B^2 \quad \text{material buckling} \]
\[= \text{geometrical buckling} \quad \left| B^2 \left(\frac{R_e}{R_c}\right)^2 \right| \text{ sphere etc.} \]

(a) Rewriting above equation:
\[k_{\infty} = 1 + L^2 B^2 \quad \ldots \ (1) \]

Previously, one had:
\[k_{\text{eff}} = k_{\infty} \cdot P_{\text{NF}} \cdot \frac{\text{Abs.}}{\text{Abs. + Leakage}} \quad \ldots \ (2) \]

From (1) (criticality condition):
\[k_{\text{eff}} = \frac{k_{\infty}}{1 + L^2 B^2} = 1 \quad \ldots \ (3) \]

Comparing (2), (3):
\[P_{\text{NF}} = \frac{1}{1 + L^2 B^2} \]
Comments on Criticality Condition (contd.)

(b) In general, for given values of \(k_\infty \), \(B^2 \):

One may nevertheless use the formalism of a critical system (stationary flux)…

- We consider a fictitious medium in which the number of n’s produced per fission

\[
B_{n*}^2(k_{\text{eff}}) = \frac{k_\infty / k_{\text{eff}} - 1}{L^2}
\]

For this medium,

\[
B_{n*}^2 = B^2
\]

yields

\[
k_{\text{eff}}^* = \frac{k_\infty / k_{\text{eff}}}{1 + L^2 B^2} = 1
\]

(criticality condition)

For the actual system, one needs to “search” for the modification which leads to

- Change in \(B^2 \) or in \(k_\infty \).

For a bare homogeneous reactor, the search is direct…

For a multizone system (heterogeneous layout), one needs to adopt an iterative approach

- The dimensions (or the material characteristics) are varied until

\[
k_{\text{eff}} = k_{\text{eff}}^* = 1.
\]
(c) We have

$$k_0 = \frac{\Sigma_e}{\Sigma_a}, \quad L^2 = \frac{D}{\Sigma_a}$$

$$\Rightarrow k_{\text{eff}} = \frac{k_0}{1 + L^2 B^2} = \frac{\Sigma_e}{\Sigma_a + \Sigma_a B^2} - \frac{\text{Prod.}}{\text{Abs.} + \text{Leakage}}$$

Comparing this with:

$$k_0 = \frac{\Sigma_e}{\Sigma_a} - \frac{\text{Prod.}}{\text{Abs.}}$$

$$\Rightarrow \text{Leakage term } DB^2 \text{ is like a supplementary } \Sigma_a \ldots$$

One may consider a reactor of finite dimensions (with a geometrical buckling of B^2), as though it were an infinite medium with a “poisoning” of $\Sigma_a = DB^2 \ldots$

(However, reactor equation still needs to be solved – for obtaining $B^2 \ldots$)
Summary, Lesson 9

- Multiplying media, multiplication factors
- 1-group, diffusion equation (Reactor Eq.)
- Material and geometrical buckling
- Bare homogeneous reactors (sphere, slab, cylinder, etc.)
- Absolute flux and reactor power
- Maximum- to-average flux ratio
- Comments on criticality condition
 - Non-leakage probability, criticality “search”, leakage as “absorptions” (DB²)